

Holemaking Solutions for Today's Manufacturing

Reaming

Burnishing

Threading

► Opening Drill®

Large Diameter IC Insert Drilling System

The Foundation

Since 1941, Allied Machine & Engineering has provided dependable and practical holemaking solutions to the world. What was once a small job shop in Ohio is now a worldwide leader in cutting tool technology. With three manufacturing facilities in Ohio, one in Georgia, another in Germany, and headquarters in both the United States and Europe, Allied Machine is positioned to bring innovative solutions and technical expertise directly to the customers' hands.

The Beginning

Harold E. Stokey founded Allied Machine & Engineering to aid the war effort, manufacturing taper bearing lock nuts for the production of M1 tanks. Years later, after a sales meeting gone wrong, Stokey possessed a warehouse stocked with spade drill inserts. He set forth into the industry that would become Allied Machine's thriving identity: holemaking.

The T-A®

When Harold's son, William H. Stokey, became the president and CEO, he developed the Throw Away—or T-A—spade drill insert system. The T-A revolutionized the holemaking industry, launching Allied Machine ahead of the competition. Since then, numerous innovations and advancements have been created from the T-A's inspiration.

The Innovation

Since the development of the T-A, Allied Machine has expanded its product offering to support a vast range of customer applications, including large diameter and deep hole drilling, boring, reaming, burnishing, porting, and threading.

The Future

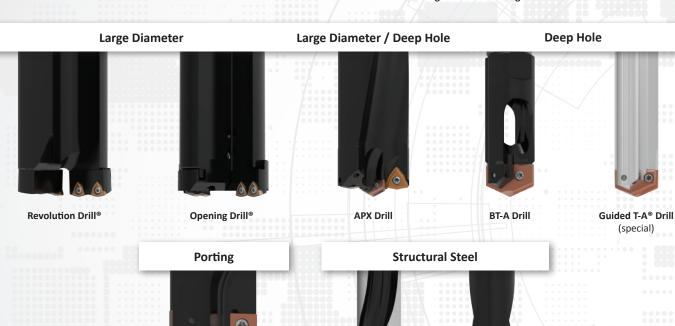
Allied Machine is constantly investing in the brightest and sharpest minds, shaping a future filled with success and quality for customers around the world.

Steve Stokey Executive Vice President William H. Stokey
President and CEO

Mike Stokey Executive Vice President

Holemaking Solutions for Today's Manufacturing

WOHLHAUPTER®



CRITERION

DRILLING

AccuPort 432®

BORING

WOHLHAUPTER® Bringing you the finest in precision cutting tools

GEN3SYS® XT

CRITERION

REAMING

BURNISHING

THREADING

AccuThread™ 856 Pin Style Indexable

AccuThread™ 856
Bolt-in Style Indexable

AccuThread™ 856 Solid Carbide

ThreadMills USA Solid Carbide

SPECIALS

Insta-Quote™
Online custom tool builder and quote generator

i-FormCustom indexable drill / form tool system

Engineered Specials

If your special holemaking needs cannot be met with the Insta-Quote system, Allied Machine can specially engineer

ANY product to make your application a success. Simply contact your local Field Sales Engineer or the Allied Machine Application Engineering department for assistance with creating your special tooling. Let Allied Machine resolve your challenges today.

Opening Drill®

Large Diameter Replaceable IC Insert Drilling System

▶ Diameter Range: 2.000" - 5.620" (50.8mm - 142.8mm)

Need larger holes? No problem.

The Opening Drill is an extremely effective tool designed to enlarge existing holes. It is available in nine different shank styles: Straight, ABS 63, CAT V40, CAT V50, HSK 63A/C, HSK 100A/C, BT 40, BT 50, and DIN50.

In a *single* operation, an existing hole can be opened and large amounts of material can be removed. The insert design reduces chip size and improves evacuation. Also, inventory and cost are reduced by the adjustable diameters.

Excellent chip control

Improves hole quality and surface finish

Provides maximum durability and stability

Applicable Industries

Automotive

Firearms

General

Machining

Renewable Energy

Your safety and the safety of others is very important. This catalog contains important safety messages. Always read and follow all safety precautions.

This triangle is a safety hazard symbol. It alerts you to potential safety hazards that can cause tool failure and serious injury.

When you see this symbol in the catalog, look for a related safety message that may be near this triangle or referred to in the nearby text.

There are safety signal words also used in the catalog. Safety messages follow these words.

⚠ WARNING

WARNING (shown above) means that failure to follow the precautions in this message could result in tool failure and serious injury.

NOTICE means that failure to follow the precautions in this message could result in damage to the tool or machine but not result in personal injury.

NOTE and **IMPORTANT** are also used. These are important that you read and follow but are not safety-related.

Visit www.alliedmachine.com for the most up-to-date information and procedures.

Reference Icons

The following icons will appear throughout the catalog to help you navigate between products.

Setup / Assembly Information

Detailed instructions and information regarding the corresponding part(s)

Recommended Cutting Data

Speed and feed recommendations for optimum and safe drilling

00000/	0	
	Diamet	er Range
Series	Imperial (inch)	Metric (mm)
OP1	2.00 - 2.50	50.8 - 63.5
OP2	2.50 - 3.00	63.5 - 76.2
OP3	3.00 - 4.12	76.2 - 104.7
OP4	4.12 - 5.62	104.7 - 142.8

Opening Drill® Contents

Introduction Information

Product Overview									2
Set-up Instructions									3
Product Nomenclature									4

Drill Shank Style

Straight												5
CAT40												6
CAT50												7
BT40		0										8
BT50												9
HSK63												
HSK100			0.0	0	•	÷	÷	ě.			. 1	1
ABS63			•								. 1	12
DIN50											. 1	13

Recommended Cutting Data

Imperial (inch)				•			٠	14 - 15
Metric (mm)								

C

Product Overview

Features

- Can be used as a rotating or stationary tool
- Can be used in rough boring operations
- Available in multiple different shanks (see chart below)
- Smooth cutting action and quiet operations in lathes and mills
- · Special lengths, diameters, and shanks are available upon request

Advantages

- Opens an existing hole in a single operation
- Ignores core shifts up to 1/8" (3.175mm) providing straight and true holes without the need for boring
- · Allows for large amounts of material removal
- Unique design enables larger holes to be made on low horsepower machines
- · Replaceable cartridges protect your investment
- · Adjustable diameters reduce inventory and cost

AM300®

AM200®

TiN

6

2 Inserts (OP1 - OP3 series)

3 Inserts (OP4 series)

Insert Application Recommendations

Carbide Grade	e Options
C5 (P35)	General purpose carbide grade suitable for most applications. Common application in steels and stainless steels.
C1 (K35)	Toughest carbide grade. Provides the best combination of edge strength and tool life. • Recommended for less rigid applications.
C2 (K25)	Higher wear resistant carbide suitable for abrasive material applications. ► Recommended for grey, ductile, and nodular irons.

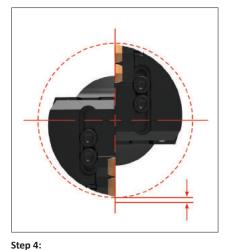
Additional Geometry Option

High Rake	Provides superior chip control and tool life in long chipping carbon and alloy steels
(HR)	below 200 Bhn.

- The design allows for excellent chip control and aggressive penetration rates
- The proprietary AM200® and AM300® coatings increase tool life above competitors' premium coatings
- The same inserts are used for both Revolution Drill and Opening Drill products

Χ

Set-up Instructions

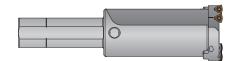

Step 1: Loosen the mounting screws on both cartridges.

Set one cartridge to the finish diameter by tightening the adjustment screw against the adjustment pin.

Step 3: Tighten the mounting screws on the cartridge to 11-14 ft-lbf (15-19 N-m).

Set the opposing cartridge with 0.160" to 0.200" radial offset inward by tightening the adjustment screw against the adjustment pin (optimum situation for each insert to remove equal material).

Tighten the mounting screws on the cartridge to 11-14 ft-lbf (15-19 N-m).


Straight Shanks

- Designed for lathe applications
- Can be cut off for use in end-mill holders
- The score mark (circled to the left) is provided for recommended cut length
- Cut and deburr at the score mark
- This improves rigidity when the body sits against the face of an end-mill holder

Product Nomenclature

Opening Drill Holders

1. Series

OP1 = 2.00" - 2.50" (50.8mm - 63.5mm)

OP2 = 2.50" - 3.00" (63.5mm - 76.2mm)

OP3 = 3.00" - 4.12" (76.2mm - 104.7mm)

OP4 = 4.12" - 5.62" (104.7mm - 142.8mm)

2. Length

1S = Short

1L = Long

3. Shank Type	
SS1.5 = 1-1/2Ø straight	BT40 = BT40
SS2.5 = 2-1/2Ø straight	BT50 = BT50
40M = 40mm straight	HSK63 = HSK 63A/C
50M = 50mm straight	HSK100 = HSK 100A/C
CV40 = CAT40	ABS63 = ABS63
CV50 = CAT50	DV50 = DIN50

Opening Drill Inserts

1. Compatible with:

Opening Drill

Revolution Drill

2. IC Type

05 = 5/16"

3. Thickness

T3 = 5/32"

4. Radius

08 = 1/32"

5. Carbide Grade

Blank = C5 (P35)

1 = C1 (K35)

2 = C2 (K25)

6. Coating

P = AM300[®]

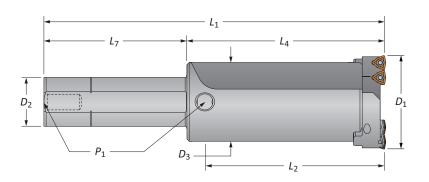
H = AM200[®]

T = TiN

A = TiAlN

N = TiCN

U = Uncoated

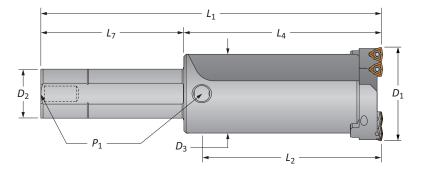

7. Geometry

Blank = General Purpose

 \mathbf{HR} = High Rake

Reference Key

Symbol	Attribute
D_1	Drill diameter range
D ₂	Shank diameter
D ₃	Body diameter
<i>L</i> ₁	Overall length
L ₂	Maximum drill depth
L ₄	Holder length
L ₇	Shank length
P_1	Rear pipe tap



D

Opening Drill Holders

Straight Shank | Diameter Range: 2.00" - 5.62" (50.8mm - 142.8mm)

Holders

				Hol	der			Shank			
	Length	D ₁ Range	D ₃	L ₂	L ₄	L ₁	D ₂	L ₇	P_1	Part No.	Cartridges
	Short	2.00 - 2.50	1.840	3-9/32	4-3/64	8-3/64	1-1/2	4	1/4 NPT	OP1-1S-SS1.5	OP1-WC05
	Long	2.00 - 2.50	1.840	5-17/32	6-19/64	10-19/64	1-1/2	4	1/4 NPT	OP1-1L-SS1.5	OP1-WC05
	Short	2.50 - 3.00	2.220	4-43/64	5-1/2	9-1/2	1-1/2	4	1/4 NPT	OP2-1S-SS1.5	OP2-WC05
0	Long	2.50 - 3.00	2.220	7-43/64	8-1/2	12-1/2	1-1/2	4	1/4 NPT	OP2-1L-SS1.5	OP2-WC05
U	Short	3.00 - 4.12	2.806	5-7/64	6	10	1-1/2	4	1/4 NPT	OP3-1S-SS1.5	OP3-WC05
	Long	3.00 - 4.12	2.806	9-7/64	10	14	1-1/2	4	1/4 NPT	OP3-1L-SS1.5	OP3-WC05
	Short	4.12 - 5.62	3.500	5-1/64	6	10-1/2	2	4-1/2	1/4 NPT	OP4-1S-SS2.0	OP4-WC05
	Long	4.12 - 5.62	3.500	10-33/64	11-1/2	16	2	4-1/2	1/4 NPT	OP4-1L-SS2.0	OP4-WC05
	Short	50.8 - 63.5	1.840	83.5	102.9	172.9	40	70	_	OP1-1S-40M	OP1-WC05
	Long	50.8 - 63.5	1.840	140.6	160.1	230.1	40	70	_	OP1-1L-40M	OP1-WC05
	Short	63.5 - 76.2	2.220	118.5	139.8	209.8	40	70	_	OP2-1S-40M	OP2-WC05
@	Long	63.5 - 76.2	2.220	194.7	216.0	286.0	40	70	_	OP2-1L-40M	OP2-WC05
ш	Short	76.2 - 104.7	2.806	129.9	152.5	222.5	40	70	_	OP3-1S-40M	OP3-WC05
	Long	76.2 - 104.7	2.806	231.5	254.1	324.1	40	70	_	OP3-1L-40M	OP3-WC05
	Short	104.7 - 142.8	3.500	127.4	152.5	232.5	50	80	-	OP4-1S-50M	OP4-WC05
	Long	104.7 - 142.8	3.500	254.4	292.2	372.2	50	80	_	OP4-1L-50M	OP4-WC05

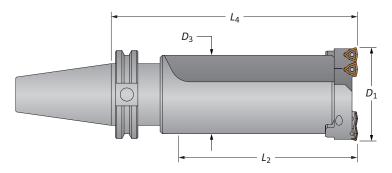
^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

	Qty.		
Replacement	Inserts	Mounting	Adjusting
Cartridges	Needed	Screw	Screw
OP1-WC05	2	MS-13M-1	AS-10T9-1
OP2-WC05	2	MS-15M-1	AS-10T9-1
OP3-WC05	2	MS-15M-1	AS-12T9-1
OP4-WC05	3	MS-15M-1	AS-14T9-1

IC Inserts

			Part No.		
Carbide					Insert
Grade	Geometry	AM300®	AM200®	TiN	Screws
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	-	IS-10-1
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1


Mounting screws sold in multiples of 4 | Adjusting screws sold in multiples of 4 IC inserts sold in multiples of 10 | Insert screws sold in multiples of 10 1 = Imperial (in) m = Metric (mm) C

Opening Drill Holders

CAT40 Shank | Diameter Range: 2.00" - 5.62" (50.8mm - 142.8mm)

Holders

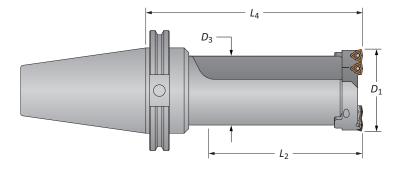
				Holder			
	Length	D ₁ Range	D ₃	L ₂	L ₄	Part No.	Cartridges
	Short	2.00 - 2.50	1.840	3-9/32	5-27/64	OP1-1S-CV40	OP1-WC05
	Long	2.00 - 2.50	1.840	5-17/32	7-43/64	OP1-1L-CV40	OP1-WC05
	Short	2.50 - 3.00	2.220	4-43/64	6-7/8	OP2-1S-CV40	OP2-WC05
0	Long	2.50 - 3.00	2.220	7-43/64	9-7/8	OP2-1L-CV40	OP2-WC05
	Short	3.00 - 4.12	2.806	5-7/64	7-3/8	OP3-1S-CV40	OP3-WC05
	Long	3.00 - 4.12	2.806	9-7/64	11-3/8	OP3-1L-CV40	OP3-WC05
	Short	4.12 - 5.62	3.500	5-1/64	7-3/8	OP4-1S-CV40	OP4-WC05

^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

	Qty.		
Replacement	Inserts	Mounting	Adjusting
Cartridges	Needed	Screw	Screw
OP1-WC05	2	MS-13M-1	AS-10T9-1
OP2-WC05	2	MS-15M-1	AS-10T9-1
OP3-WC05	2	MS-15M-1	AS-12T9-1
OP4-WC05	3	MS-15M-1	AS-14T9-1

Carbide					Insert
Grade	Geometry	AM300®	AM200®	TiN	Screws
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	_	IS-10-1
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1



THREADING

Opening Drill Holders

CAT50 Shank | Diameter Range: 2.00" - 5.62" (50.8mm - 142.8mm)

Holders

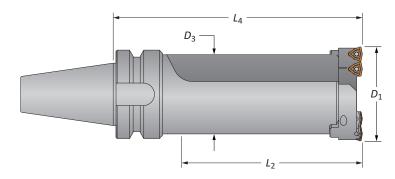
				Holder			
	Length	D ₁ Range	D_3	L ₂	L ₄	Part No.	Cartridges
	Short	2.00 - 2.50	1.840	3-9/32	5-27/64	OP1-1S-CV50	OP1-WC05
	Long	2.00 - 2.50	1.840	5-17/32	7-43/64	OP1-1L-CV50	OP1-WC05
	Short	2.50 - 3.00	2.220	4-43/64	6-7/8	OP2-1S-CV50	OP2-WC05
0	Long	2.50 - 3.00	2.220	7-43/64	9-7/8	OP2-1L-CV50	OP2-WC05
U	Short	3.00 - 4.12	2.806	5-7/64	7-3/8	OP3-1S-CV50	OP3-WC05
	Long	3.00 - 4.12	2.806	9-7/64	11-3/8	OP3-1L-CV50	OP3-WC05
	Short	4.12 - 5.62	3.500	5-1/64	7-3/8	OP4-1S-CV50	OP4-WC05
	Long	4.12 - 5.62	3.500	10-33/64	12-7/8	OP4-1L-CV50	OP4-WC05

^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Adjusting Screw
OP1-WC05	2	MS-13M-1	AS-10T9-1
OP2-WC05	2	MS-15M-1	AS-10T9-1
OP3-WC05	2	MS-15M-1	AS-12T9-1
OP4-WC05	3	MS-15M-1	AS-14T9-1

Carbide					Insert
Grade	Geometry	AM300®	AM200®	TiN	Screws
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	_	IS-10-1
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1



Opening Drill Holders

BT40 Shank | Diameter Range: 2.00" - 5.62" (50.8mm - 142.8mm)

Holders

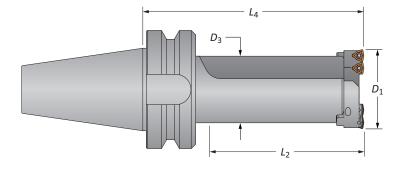
				Holder			
	Length	D ₁ Range	D_3	L ₂	L ₄	Part No.	Cartridges
	Short	50.8 - 63.5	1.840	83.5	137.8	OP1-1S-BT40	OP1-WC05
	Long	50.8 - 63.5	1.840	140.6	195.0	OP1-1L-BT40	OP1-WC05
	Short	63.5 - 76.2	2.220	118.5	174.7	OP2-1S-BT40	OP2-WC05
(1)	Long	63.5 - 76.2	2.220	194.7	250.9	OP2-1L-BT40	OP2-WC05
	Short	76.2 - 104.7	2.806	129.9	187.4	OP3-1S-BT40	OP3-WC05
	Long	76.2 - 104.7	2.806	231.5	289.0	OP3-1L-BT40	OP3-WC05
	Short	104.7 - 142.8	3.500	127.4	187.4	OP4-1S-BT40	OP4-WC05

^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

	Qty.		
Replacement	Inserts	Mounting	Adjusting
Cartridges	Needed	Screw	Screw
OP1-WC05	2	MS-13M-1	AS-10T9-1
OP2-WC05	2	MS-15M-1	AS-10T9-1
OP3-WC05	2	MS-15M-1	AS-12T9-1
OP4-WC05	3	MS-15M-1	AS-14T9-1

			Part No.					
Carbide					Insert			
Grade	Geometry	AM300®	AM200®	TiN	Screws			
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1			
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1			
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	-	IS-10-1			
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1			


Χ

Opening Drill Holders

BT50 Shank | Diameter Range: 2.00" - 5.62" (50.8mm - 142.8mm)

Holders

			Holder				
	Length	D ₁ Range	D ₃	L ₂	L ₄	Part No.	Cartridges
	Short	50.8 - 63.5	1.840	83.5	147.4	OP1-1S-BT50	OP1-WC05
	Long	50.8 - 63.5	1.840	140.6	204.5	OP1-1L-BT50	OP1-WC05
	Short	63.5 - 76.2	2.220	118.5	174.7	OP2-1S-BT50	OP2-WC05
@	Long	63.5 - 76.2	2.220	194.7	260.4	OP2-1L-BT50	OP2-WC05
•	Short	76.2 - 104.7	2.806	129.9	196.9	OP3-1S-BT50	OP3-WC05
	Long	76.2 - 104.7	2.806	231.5	298.5	OP3-1L-BT50	OP3-WC05
	Short	104.7 - 142.8	3.500	127.4	196.9	OP4-1S-BT50	OP4-WC05
	Long	104.7 - 142.8	3.500	254.4	336.5	OP4-1L-BT50	OP4-WC05

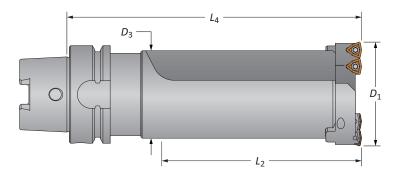
^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Adjusting Screw
OP1-WC05	2	MS-13M-1	AS-10T9-1
OP2-WC05	2	MS-15M-1	AS-10T9-1
OP3-WC05	2	MS-15M-1	AS-12T9-1
OP4-WC05	3	MS-15M-1	AS-14T9-1

			Part No.				
Carbide					Insert		
Grade	Geometry	AM300®	AM200®	TiN	Screws		
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1		
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1		
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	_	IS-10-1		
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1		

 C


THREADING

Opening Drill Holders

HSK63 Shank | Diameter Range: 2.00" - 5.62" (50.8mm - 142.8mm)

Holders

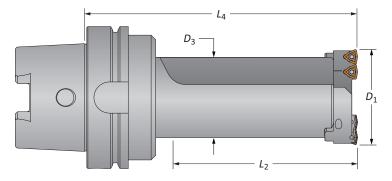
				Holder			
	Length	D ₁ Range	<i>D</i> ₃	L ₂	L ₄	Part No.	Cartridges
	Short	2.00 - 2.50	1.840	3-9/32	5-59/64	OP1-1S-HSK63	OP1-WC05
	Long	2.00 - 2.50	1.840	5-17/32	8-11/64	OP1-1L-HSK63	OP1-WC05
	Short	2.50 - 3.00	2.220	4-43/64	7-3/8	OP2-1S-HSK63	OP2-WC05
0	Long	2.50 - 3.00	2.220	7-43/64	10-3/8	OP2-1L-HSK63	OP2-WC05
	Short	3.00 - 4.12	2.806	5-7/64	7-7/8	OP3-1S-HSK63	OP3-WC05
	Long	3.00 - 4.12	2.806	9-7/64	11-7/8	OP3-1L-HSK63	OP3-WC05
	Short	4.12 - 5.62	3.500	5-1/64	7-7/8	OP4-1S-HSK63	OP4-WC05

^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

	Qty.		
Replacement	Inserts	Mounting	Adjusting
Cartridges	Needed	Screw	Screw
OP1-WC05	2	MS-13M-1	AS-10T9-1
OP2-WC05	2	MS-15M-1	AS-10T9-1
OP3-WC05	2	MS-15M-1	AS-12T9-1
OP4-WC05	3	MS-15M-1	AS-14T9-1

			Part No.				
Carbide					Insert		
Grade	Geometry	AM300®	AM200®	TiN	Screws		
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1		
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1		
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	-	IS-10-1		
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1		


Χ

Opening Drill Holders

HSK100 Shank | Diameter Range: 2.00" - 5.62" (50.8mm - 142.8mm)

Holders

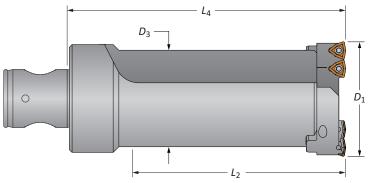
			Holder				
	Length	D ₁ Range	D_3	L ₂	L ₄	Part No.	Cartridges
	Short	2.00 - 2.50	1.840	3-9/32	6-1/64	OP1-1S-HSK100	OP1-WC05
	Long	2.00 - 2.50	1.840	5-17/32	8-17/64	OP1-1L-HSK100	OP1-WC05
	Short	2.50 - 3.00	2.220	4-43/64	7-15/32	OP2-1S-HSK100	OP2-WC05
0	Long	2.50 - 3.00	2.220	7-43/64	10-15/32	OP2-1L-HSK100	OP2-WC05
U	Short	3.00 - 4.12	2.806	5-7/64	7-31/32	OP3-1S-HSK100	OP3-WC05
	Long	3.00 - 4.12	2.806	9-7/64	11-31/32	OP3-1L-HSK100	OP3-WC05
	Short	4.12 - 5.62	3.500	5-1/64	7-31/32	OP4-1S-HSK100	OP4-WC05
	Long	4.12 - 5.62	3.500	10-33/64	13-15/32	OP4-1L-HSK100	OP4-WC05

^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Adjusting Screw
OP1-WC05	2	MS-13M-1	AS-10T9-1
OP2-WC05	2	MS-15M-1	AS-10T9-1
OP3-WC05	2	MS-15M-1	AS-12T9-1
OP4-WC05	3	MS-15M-1	AS-14T9-1

Carbide					Insert
Grade	Geometry	AM300®	AM200®	TiN	Screws
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	-	IS-10-1
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1



THREADING

Opening Drill Holders

ABS63 Shank | Diameter Range: 2.00" - 5.62" (50.8mm - 142.8mm)

Holders

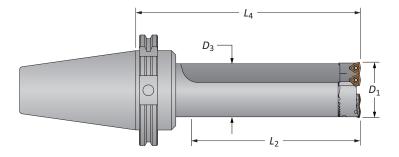
				Holder			
	Length	D ₁ Range	D_3	L ₂	L ₄	Part No.	Cartridges
	Short	2.00 - 2.50	1.840	3-9/32	5-1/2	OP1-1S-ABS63	OP1-WC05
	Long	2.00 - 2.50	1.840	5-17/32	7-3/4	OP1-1L-ABS63	OP1-WC05
	Short	2.50 - 3.00	2.220	4-43/64	6-1/4	OP2-1S-ABS63	OP2-WC05
0	Long	2.50 - 3.00	2.220	7-43/64	9-1/4	OP2-1L-ABS63	OP2-WC05
	Short	3.00 - 4.12	2.806	5-7/64	6-3/4	OP3-1S-ABS63	OP3-WC05
	Long	3.00 - 4.12	2.806	9-7/64	10-3/4	OP3-1L-ABS63	OP3-WC05
	Short	4.12 - 5.62	3.500	5-1/64	6-3/4	OP4-1S-ABS63	OP4-WC05

^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

	Qty.		
Replacement	Inserts	Mounting	Adjusting
Cartridges	Needed	Screw	Screw
OP1-WC05	2	MS-13M-1	AS-10T9-1
OP2-WC05	2	MS-15M-1	AS-10T9-1
OP3-WC05	2	MS-15M-1	AS-12T9-1
OP4-WC05	3	MS-15M-1	AS-14T9-1

			Part No.				
Carbide					Insert		
Grade	Geometry	AM300®	AM200®	TiN	Screws		
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1		
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1		
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	-	IS-10-1		
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1		



THREADING

Opening Drill Holders

DIN50 Shank | Diameter Range: 2.00" - 5.62" (50.8mm - 142.8mm)

Holders

			Holder				
	Length	D ₁ Range	D_3	L ₂	L ₄	Part No.	Cartridges
	Short	50.8 - 63.5	1.840	83.5	137.9	OP1-1S-DV50	OP1-WC05
	Long	50.8 - 63.5	1.840	140.6	195.1	OP1-1L-DV50	OP1-WC05
	Short	63.5 - 76.2	2.220	118.5	174.8	OP2-1S-DV50	OP2-WC05
a	Long	63.5 - 76.2	2.220	194.7	251.0	OP2-1L-DV50	OP2-WC05
w	Short	76.2 - 104.7	2.806	129.9	187.5	OP3-1S-DV50	OP3-WC05
	Long	76.2 - 104.7	2.806	231.5	289.1	OP3-1L-DV50	OP3-WC05
	Short	104.7 - 142.8	3.500	127.4	187.5	OP4-1S-DV50	OP4-WC05
	Long	104.7 - 142.8	3.500	254.4	327.2	OP4-1L-DV50	OP4-WC05

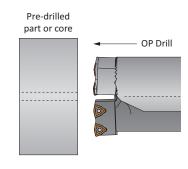
^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Adjusting Screw
OP1-WC05	2	MS-13M-1	AS-10T9-1
OP2-WC05	2	MS-15M-1	AS-10T9-1
OP3-WC05	2	MS-15M-1	AS-12T9-1
OP4-WC05	3	MS-15M-1	AS-14T9-1

			Part No.					
Carbide					Insert			
Grade	Geometry	AM300®	AM200®	TiN	Screws			
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1			
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1			
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	ı	IS-10-1			
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1			

C


Recommended Cutting Data | Imperial (inch)

				Speed (SFM)		
ISO	Material	Hardness (BHN)	AM300®	AM200®	Tin	Feed Rate (IPR)
	Free Machining Steel	100 - 250	900 - 1300	850 - 1200	700 - 900	.0035007
	1118, 1215, 12L14, etc.					
	Low Carbon Steel	85 - 275	850 - 1250	800 - 1150	650 - 850	.0030065
	1010, 1020, 1025, 1522, 1144, etc.					
	Medium Carbon Steel	125 - 325	800 - 1050	750 - 950	600 - 850	.00350065
	1030, 1040, 1050, 1527, 1140, 1151, etc.					
P	Alloy Steel	125 - 375	750 - 1000	700 - 900	600 - 850	.00350065
	4140, 5140, 8640, etc.					
	High Strength Alloy	225 - 400	600 - 850	550 - 750	400 - 650	.003005
	4340, 4330V, 300M, etc.					
	Structural Steel	100 - 350	850 - 1050	800 - 950	650 - 850	.0030065
	A36, A285, A516, etc.					
	Tool Steel	150 - 250	400 - 800	350 - 700	250 - 650	.0025005
	H-13, H-21, A-4, 0-2, S-3, etc.					
	High Temp Alloy	140 - 310	250 - 450	250 - 350	150 - 300	.0025005
S	Hastelloy B, Inconel 600, etc.					
			I			
	Stainless Steel 400 Series	185 - 350	600 - 850	550 - 750	400 - 650	.003006
	416, 420, etc.					
M	Stainless Steel 300 Series	135 - 275	600 - 850	550 - 750	400 - 650	.003006
	304, 316, 17-4PH, etc.	105.075	500 750	450, 650	202 552	000 005
	Super Duplex Stainless Steel	135 - 275	500 - 750	450 - 650	300 - 550	.002005
K	Nodular, Grey, Ductile Cast Iron	120 - 320	700 - 900	650 - 800	500 - 700	.004008
	Cast Aluminum	30 - 180	1250 - 1650	1200 - 1550	950 - 1100	.006012
N	Wrought Aluminum	30 - 180	1250 - 1650	1200 - 1550	950 - 1100	.006012
	Brass	30 - 100	950 - 1350	900 - 1250	750 - 1100	.005009

Minimum Pilot Hole Diameter = Finish Diameter - C

Ex: To open an existing diameter hole to 2.75" diameter, an OP2 tool would be used. The minimum pilot hole diameter would be: 2.750 - 1.880 = 0.870"

Drill Diameter Range	С
2.00 - 2.50	1.880
2.50 - 3.00	1.880
3.00 - 4.12	1.880
4.12 - 5.62	2.680
	2.00 - 2.50 2.50 - 3.00 3.00 - 4.12

IMPORTANT: The speeds and feeds listed above are considered a general starting point for all applications. Factory technical assistance is available for your specific applications through our Application Engineering department.

D

THREADING

Formulas and Constants | Imperial (inch)

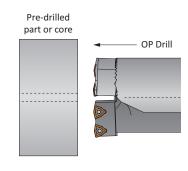
Material Constants

Type of Material	Hardness (BHN)	K _m (lbs/in²)
Free Machining Steel	100 - 250	0.75
Low Carbon Steel	85 - 275	0.85
Medium Carbon Steel	125 - 325	0.90
Alloy Steel	125 - 375	1.00
High Strength Steel	225 - 400	1.15
Structural Steel	100 - 350	1.00
Tool Steel	150 - 250	0.90
High Temperature Alloy	140 - 310	1.44
Titanium Alloy	140 - 310	0.72
Aerospace Alloy	185 - 350	0.70
Stainless Steel 400 Series	185 - 350	1.08
Stainless Steel 300 Series	135 - 275	0.94
Super Duplex Stainless Steel	135 - 275	0.94
Wear Plate	400 - 600	1.60
Hardened Steel	300 - 500	1.40
Nodular, Ductile Cast Iron	120 - 320	0.65
Grey Cast Iron	120 - 320	0.75
Cast Aluminum	30 - 180	0.40
Wrought Aluminum	30 - 180	0.40
Aluminum Bronze	100 - 250	0.50
Brass	100	0.35
Copper	60	0.30

Formulas

0		
1.	RPM	= (3.82 • SFM) / DIA _F
	where:	
	RPM	= revolutions per minute (rev/min)
	SFM	= speed (ft/min)
	DIA_F	= finish diameter of drill (inch)
2.	НР	= (0.5891 • (DIA _F ² − DIA _P ²) • IPR • RPM • K _m) / 0.80
	where:	
	Tool Power	= tool power (HP)
	DIA _F	= finish diameter of drill (inch)
	DIA_{P}	= pre-drill diameter (inch)
	IPR	= feed rate (in/rev)
	RPM	= revolutions per minute (rev/min)
	K _m	= specific cutting energy (lbs/in²)
		machine efficiency (using 0.80 as constant)
3.	Thrust	= 148,500 • IPR • (DIA _F − DIA _P) • K _m
	where:	
	Thrust	= axial thrust (lbs)
	IPR	= feed rate (in/rev)
	DIA _F	= finish diameter of drill (inch)
	DIA_P	= pre-drill diameter (inch)
	DIA _P K _m	= pre-drill diameter (inch) = specific cutting energy (lbs/in²)
	•	
5.	•	
5.	K _m	= specific cutting energy (lbs/in²)
5.	K _m	= specific cutting energy (lbs/in²)
5.	Torque where:	= specific cutting energy (lbs/in²) = (HP • 5252) / RPM
5.	Torque where: Torque	= specific cutting energy (lbs/in²) = (HP • 5252) / RPM = torque (ft/lbs)
5.	Torque where: Torque HP	= specific cutting energy (lbs/in²) = (HP • 5252) / RPM = torque (ft/lbs) = tool power (HP)

The table and equations on this page are found in the *Machinery's Handbook*. Permission to simplify and print the equations is granted by the Editor of the *Machinery's Handbook*.


Recommended Cutting Data | Metric (mm)

		Speed (M/min)				
ISO	Material	Hardness (BHN)	AM300®	AM200®	Tin	Feed Rate (mm/rev)
	Free Machining Steel	100 - 250	274 - 396	259 - 366	213 - 274	0.09 - 0.18
	1118, 1215, 12L14, etc.					
	Low Carbon Steel	85 - 275	259 - 381	244 - 351	198 - 259	0.08 - 0.17
	1010, 1020, 1025, 1522, 1144, etc.					
	Medium Carbon Steel	125 - 325	244 - 320	229 - 290	183 - 259	0.09 - 0.17
	1030, 1040, 1050, 1527, 1140, 1151, etc.					
P	Alloy Steel	125 - 375	229 - 305	213 - 274	183 - 259	0.09 - 0.17
r	4140, 5140, 8640, etc.					
	High Strength Alloy	225 - 400	183 - 259	168 - 229	122 - 198	0.08 - 0.13
	4340, 4330V, 300M, etc.					
	Structural Steel	100 - 350	259 - 320	244 - 290	198 - 259	0.08 - 0.17
	A36, A285, A516, etc.					
	Tool Steel	150 - 250	122 - 244	107 - 213	76 - 198	0.06 - 0.13
	H-13, H-21, A-4, 0-2, S-3, etc.					
	High Temp Alloy	140 - 310	76 - 137	76 - 107	46 - 91	0.06 - 0.11
S	Hastelloy B, Inconel 600, etc.					
	Stainless Steel 400 Series	185 - 350	183 - 259	168 - 229	122 - 198	0.08 - 0.15
	416, 420, etc.	425 275	402 250	460, 220	122 100	0.00 0.15
M	Stainless Steel 300 Series	135 - 275	183 - 259	168 - 229	122 - 198	0.08 - 0.15
	304, 316, 17-4PH, etc. Super Duplex Stainless Steel	135 - 275	152 - 228	137 - 198	91 - 152	0.05 - 0.12
	Super Duplex Stalliless Steel	155 - 275	132 - 220	137 - 190	91 - 132	0.03 - 0.12
K	Nodular, Grey, Ductile Cast Iron	120 - 320	213 - 274	198 - 244	152 - 213	0.10 - 0.20
	Cast Aluminum	30 - 180	381 - 503	381 - 472	290 - 335	0.15 - 0.30
N	Wrought Aluminum	30 - 180	381 - 503	381 - 472	290 - 335	0.15 - 0.30
	Brass	30 - 100	290 - 411	274 - 381	229 - 335	0.13 - 0.23

Minimum Pilot Hole Diameter = Finish Diameter - C

Ex: To open an existing diameter hole to 69.85mm diameter, an OP2 tool would be used. The minimum pilot hole diameter would be: 69.85 - 47.75 = 22.10

Drill Diameter Range	С
50.8 - 63.5	47.75
63.5 - 76.2	47.75
76.2 - 104.6	47.75
104.6 - 142.7	68.07
	50.8 - 63.5 63.5 - 76.2 76.2 - 104.6

IMPORTANT: The speeds and feeds listed above are considered a general starting point for all applications. Factory technical assistance is available for your specific applications through our Application Engineering department.

THREADING

Formulas and Constants | Metric (mm)

Material Constants

Type of Material	Hardness (BHN)	K _m (lbs/in²)
Free Machining Steel	100 - 250	5.17
Low Carbon Steel	85 - 275	5.86
Medium Carbon Steel	125 - 325	6.21
Alloy Steel	125 - 375	6.90
High Strength Steel	225 - 400	7.93
Structural Steel	100 - 350	6.90
Tool Steel	150 - 250	6.21
High Temperature Alloy	140 - 310	9.93
Titanium Alloy	140 - 310	4.97
Aerospace Alloy	185 - 350	4.48
Stainless Steel 400 Series	185 - 350	7.45
Stainless Steel 300 Series	135 - 275	6.48
Super Duplex Stainless Steel	135 - 275	6.48
Wear Plate	400 - 600	11.04
Hardened Steel	300 - 500	9.66
Nodular, Ductile Cast Iron	120 - 320	4.48
Grey Cast Iron	120 - 320	5.17
Cast Aluminum	30 - 180	2.76
Wrought Aluminum	30 - 180	2.76
Aluminum Bronze	100 - 250	3.45
Brass	100	2.41
Copper	60	2.07

Formulas

RPM	= (318.31 • M/min) / DIA _F
where:	
RPM	= revolutions per minute (rev/min)
M/min	= speed (M/min)
DIA_F	= finish diameter of drill (mm)
kW	= $((DIA_F^2 - DIA_P^2) \cdot mm/rev \cdot RPM \cdot K_m) / 205,154$
where:	
kW	= tool power (kW)
DIA _F	= finish diameter of drill (mm)
DIA_P	= pre-drill diameter (mm)
mm/rev	= feed rate (mm/rev)
RPM	= revolutions per minute (rev/min)
K _m	= specific cutting energy (kPa)
	machine efficiency (using 205,154 as constant)
Thrust	= 148.78 • mm/rev • (DIA _F − DIA _P) • K _m
where:	
where: Thrust	= axial thrust (N)
	= axial thrust (N) = feed rate (mm/rev)
Thrust	• •
Thrust IPR	= feed rate (mm/rev)
Thrust IPR DIA _F	= feed rate (mm/rev) = finish diameter of drill (mm)
Thrust IPR DIA _F DIA _P	= feed rate (mm/rev) = finish diameter of drill (mm) = predrill diameter (mm)
Thrust IPR DIA _F DIA _P	= feed rate (mm/rev) = finish diameter of drill (mm) = predrill diameter (mm)
Thrust IPR DIA _F DIA _P K _m	= feed rate (mm/rev) = finish diameter of drill (mm) = predrill diameter (mm) = specific cutting energy (kPa)
Thrust IPR DIA _F DIA _P K _m Torque	= feed rate (mm/rev) = finish diameter of drill (mm) = predrill diameter (mm) = specific cutting energy (kPa)
Thrust IPR DIA _F DIA _P K _m Torque where:	= feed rate (mm/rev) = finish diameter of drill (mm) = predrill diameter (mm) = specific cutting energy (kPa) = (kW • 9549.3) / RPM
Thrust IPR DIA _F DIA _P K _m Torque where: Torque	= feed rate (mm/rev) = finish diameter of drill (mm) = predrill diameter (mm) = specific cutting energy (kPa) = (kW • 9549.3) / RPM = torque (Nm)
	where: RPM M/min DIA _F kW where: kW DIA _F DIA _P mm/rev RPM K _m

The table and equations on this page are found in the *Machinery's Handbook*. Permission to simplify and print the equations is granted by the Editor of the *Machinery's Handbook*.

Guaranteed Test / Demo Application Form

Distributor PO #

The following must be filled out completely before your test will be considered

Distributor Information			End User Information				
Company Name: Contact: Account Number: Phone: Email:			Company Name:				
			Contact: _				
			Email:				
List all tooling, coatin	gs, substrates, speeds ar	ıd feeds, tool lif	e, and any problem	s you are expe	riencing		
List what would make	e this a successful test (i.	e. penetration r	rate, finish, tool life,	hole size, etc.)			
rmation							
	in/mm Tolerance:			Material:			
	,				(4150 / A3	6 / Cast Iron / etc.)	
eter:	in/mm Depth of C	ut:	in/mm	Hardness:		2000 / 200	
				_	(BHN / Rc)	
	RMS			State:	(Casting / F	Hot rolled / Forging)	
ation							
		Ruilder:			Model #·		
(Lathe / Screw machine / I	Machine center / etc.)	bullder:		etc.)	Wiodel III		
					Power:	HP/KW	
(CAT50 / Morse	taper, etc.)						
Orientation:	Tool Rotating:				Thrust:	lbs/N	
☐ Vertical	☐ Yes						
☐ Horizontal	□ No						
ntion							
			Coolant Pressure	e:		PSI / bar	
(Th	rough tool / Flood)						
			Coolant Volume:			GPM / LPM	
	List all tooling, coatin List what would make prmation eter: (CAT50 / Morse Orientation: Vertical Horizontal	List all tooling, coatings, substrates, speeds and List what would make this a successful test (i.e. rmation in/mm Tolerance: eter: in/mm Depth of C RMS nation (Lathe / Screw machine / Machine center / etc.) (CAT50 / Morse taper, etc.) Orientation: Tool Rotating: Vertical Yes Horizontal No	List all tooling, coatings, substrates, speeds and feeds, tool life List what would make this a successful test (i.e. penetration reference) Permation In/mm Tolerance: In/mm Depth of Cut: In/ms RMS Ination (Lathe / Screw machine / Machine center / etc.) (CAT50 / Morse taper, etc.) Orientation: Tool Rotating: Vertical Yes Horizontal No	Company Name: Contact: Industry: Phone: Email: List all tooling, coatings, substrates, speeds and feeds, tool life, and any problem List what would make this a successful test (i.e. penetration rate, finish, tool life, rmation in/mm Tolerance: in/mm Depth of Cut: in/mm RMS RMS Ration (CAT50 / Morse taper, etc.) Orientation: Tool Rotating: Vertical Yes Horizontal No Coolant Pressure	Company Name: Contact: Industry: Phone: Email: List all tooling, coatings, substrates, speeds and feeds, tool life, and any problems you are expe List what would make this a successful test (i.e. penetration rate, finish, tool life, hole size, etc.) remation In/mm Tolerance: Material: eter: in/mm Depth of Cut: in/mm Hardness: RMS State: Action (Lathe / Screw machine / Machine center / etc.)	Company Name: Contact: Industry: Phone: Email: List all tooling, coatings, substrates, speeds and feeds, tool life, and any problems you are experiencing List what would make this a successful test (i.e. penetration rate, finish, tool life, hole size, etc.) rmation rmation Tolerance: In/mm In/m	

Requested Tooling

QTY	Item Number	QTY	Item Number

Allied Machine & Engineering 120 Deeds Drive Dover, OH 44622

Telephone: (330) 343-4283
Toll Free USA & Canada: (800) 321-5537
Fax: (330) 602-3400

Warranty Information

Allied Machine & Engineering warrants to original equipment manufacturers, distributors, industrial and commercial users of its products that each new product manufactured or supplied by Allied Machine shall be free from defects in material and workmanship.

Allied Machine's obligation under this warranty is limited to furnishing without additional charge a replacement or, at its option repairing or issuing credit for any product which shall within one year from the date of sale be returned freight prepaid to the plant designated by an Allied Machine representative and which upon inspection is determined by Allied Machine to be defective in materials or workmanship.

Complete information as to operating conditions, machine, set-up, and application of cutting fluid should accompany any product returned for inspection. The provisions of this warranty shall not apply to any Allied Machine products which have been subjected to misuse, improper operating conditions, machine set-up or application of cutting fluid or which have been repaired or altered if such repair or alteration in the judgment of Allied Machine would adversely affect performance of the product.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Allied Machine shall have no liability or responsibility on any claim of any kind, whether in contract, tort or otherwise, for any loss or damage arising out of, connected with, or resulting from the manufacture, sale, delivery or use of any product sold hereunder, in excess of the cost of replacement or repair as provided herein.

ALL PRICES, DELIVERIES, DESIGNS, AND MATERIALS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

United States

Allied Machine & Engineering

120 Deeds Drive **United States**

Phone:

330.343.4283

330.602.3400

Toll Free USA and Canada:

800.321.5537

Dover OH 44622

Fax:

Toll Free USA and Canada:

800.223.5140

Allied Machine & Engineering

485 W Third Street Dover OH 44622 **United States**

Phone:

330.343.4283

Toll Free USA and Canada: 800.321.5537

Fax:

330.364.7666 (Engineering Dept.)

Europe

Allied Machine & Engineering Co. (Europe) Ltd.

93 Vantage Point Pensnett Estate Kingswinford West Midlands DY6 7FR England

Phone:

+44 (0) 1384 400900

Wohlhaupter GmbH

Maybachstrasse 4 Postfach 1264 72636 Frickenhausen Germany

Phone:

011-49-7022-408-0

011-49-7022-408-212

Asia

Wohlhaupter India Pvt. Ltd.

B-23, 2nd Floor **B Block Community Centre** Janakpuri, New Delhi - 110058 India

Phone:

+91-11-41827044

Your local Allied Machine representative:

